Evolutionary Tournament-Based Comparison of Learning and Non-Learning Strategies for Iterated Games

نویسندگان

  • Stéphane Airiau
  • Sandip Sen
  • Sabyasachi Saha
چکیده

Evolutionary tournaments have been used as a tool for comparing strategies. For instance, in the late 1970’s, Axelrod organized tournaments to compare strategies for playing the iterated prisoner’s dilemma (PD) game. While these tournaments and later research have provided us with a better understanding of successful strategies for iterated PD, our understanding is less clear about strategies for playing iterated versions of arbitrary single-stage games. While solution concepts like Nash equilibria has been proposed for generalsum games, learning strategies like fictitious play may be preferred for playing against sub-rational players. In this paper, we discuss the relative performance of both learning and nonlearning strategies that embody some of the above approaches on an experimental testbed of all possible structurally distinct 2x2 conflicted games with ordinal payoffs. This set of bimatrices provides a baseline, neutral testbed for comparing strategies. We discuss the testbed, our choice of representative learning and non-learning strategies and relative rankings of these strategies ranked by cumulative score in tournaments. We also study the performance of the strategies in an evolutionary tournament. Finally, we provide some analysis of the observed results to highlight the advantage of learning strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary Tournament-Based Comparison of Learning and Non-Learning Algorithms for Iterated Games

Evolutionary tournaments have been used effectively as a tool for comparing game-playing algorithms. For instance, in the late 1970's, Axelrod organized tournaments to compare algorithms for playing the iterated prisoner's dilemma (PD) game. These tournaments capture the dynamics in a population of agents that periodically adopt relatively successful algorithms in the environment. While these t...

متن کامل

Dynamics of strategy distribution in iterated games

Evolutionary tournaments have been used as a tool for comparing game-playing strategies. For instance, in the late 1970’s, Axelrod organized tournaments to compare strategies for playing the iterated prisoner’s dilemma (PD) game. While these tournaments and later research have provided us with a better understanding of successful strategies for iterated PD, our understanding is less clear about...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Reinforcement learning produces dominant strategies for the Iterated Prisoner’s Dilemma

We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against t...

متن کامل

Towards autonomous behavior learning of non-player characters in games

Non-Player-Characters (NPCs), as found in computer games, can be modelled as intelligent systems, which serve to improve the interactivity and playability of the games. Although reinforcement learning (RL) has been a promising approach to creating the behaviour models of non-player characters (NPC), an initial stage of exploration and low performance is typically required. On the other hand, im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005